Object-based Classification of Earthquake Damage from High-resolution Optical Imagery Using Machine Learning
نویسندگان
چکیده
Object-based approaches to the segmentation and supervised classification of remotely-sensed images yield more promising results compared to traditional pixelbased approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods and trial and error are often used, but time consuming and yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time sensitive applications such as earthquake induced damage assessment. Our research takes a systematic approach to evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely-sensed imagery using Trimble’s eCognition software. We tested a variety of algorithms and parameters on post-event aerial imagery of the 2011 earthquake in Christchurch, New Zealand. Parameters and methods are adjusted and results compared against manually selected test cases representing different classifications used. In doing so, we can evaluate the effectiveness of the segmentation and classification of buildings, earthquake damage, vegetation, vehicles and paved areas, and compare different levels of multi-step image segmentations. Specific methods and parameters explored include classification hierarchies, object selection strategies, and multilevel segmentation strategies. This systematic approach to object-based image classification is used to develop a classifier that is then compared against current pixel-based classification methods for post-event imagery of earthquake damage. Our results show a measurable improvement against established pixel-based methods as well as object-based methods for classifying earthquake damage in high resolution, post-event imagery.
منابع مشابه
Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملEffect of Label Noise on the Machine-Learned Classification of Earthquake Damage
Automated classification of earthquake damage in remotely-sensed imagery using machine learning techniques depends on training data, or data examples that are labeled correctly by a human expert as containing damage or not. Mislabeled training data are a major source of classifier error due to the use of imprecise digital labeling tools and crowdsourced volunteers who are not adequately trained...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کامل